Reduce, Reuse, Recycle – the waste imperative is as clear as it can get. What’s less clear, however, is what we should we do with the remaining stuff. Even the greenest society is, at a certain point, confronted with the unusable leftovers of consumption. What should happen to these? Treatment of the leftovers is a well discussed question and the answer relies on three big alternatives: incineration, dumping and composting. All three have pros and cons, some of which are apparent, others rather surprising.
In this article, let me introduce you to a life cycle assessment (LCA) that analyzes the main waste management options for municipal solid waste in detail. I have to tell you right away: none of the options is 100% environmentally friendly. Waste always has a negative impact on the environment. It can only be managed, never reduced to zero – unless you reduce the waste itself to zero. However, by modeling all material flows and their related environmental impacts, the life cycle assessment method gives us a clear picture of how the different options perform in many different categories.
Different Waste Management Inventories in Different Parts of the World
To begin with, I have to make a big distinction since the options discussed in this article are limited to industrialized countries. Yes, the developing world and especially the most dynamic emerging economies have enormous growth in the amount of waste to be dealt with – however, their means to cope with the problem are different. This is the reason today’s article deals with options available only to industrialized countries. But never mind. With a little patience, we’ll get the complete picture – next week’s blog will focus on waste management in the developing countries.
The LCA of interest was conducted by Gomes Maria do Rosario and Matos Manuel Arlindo from the University of Aveiro in Portugal. The two researchers compared three alternative waste management options (PDF) in central Portugal, an area where 1,8 million inhabitants generate 700,000 tons of municipal solid waste (MSW) every year (figures from 2006). At the moment, more than 90% of the waste is dumped in landfills. Only a small potion gets recycled (8.7%) or composted (1.2%).
Landfill vs. Refuse-derived Fuel vs. Incineration
The disadvantages of landfill dumping are quite apparent – it requires large areas, can contaminate soil and water, and emits climate-relevant methane, carbon dioxide and odors. In order to minimize the environmental damage, modern landfills are equipped with a waterproof ground layer and the means to capture leachate and monitor its quality. Leachate is the liquid that drips out of the waste. Moreover, aeration is provided in an attempt to minimize methane emissions (methane results from the anaerobic breakdown of carbon rich matter, which is organic material rotting with no available oxygen) – you pump fresh air into the dump to ventilate the waste. Alternatively, once the dump is full, the waste can be compressed and covered to capture the gas. This method is called landfill gas extraction and it actually promotes the production of methane. The gas can either be flared on the spot, used to generate heat and electricity (waste-to-energy), or processed to natural gas-like fuels.
Because of the disadvantages of landfills, the researchers, apart from the business-as-usual approach, analyzed two other scenarios. Scenario number two follows the PERSU II program goals which state that, by 2016, 36% of waste will be recycled (18% materials and 18% organic), mechanical-biological treatment will be used to recycle the organic components of the remainder, refuse derived fuel gets produced (18%) and a minor share of the waste goes to landfill (10%).
In scenario three, dumping plays only a minor role. Here, 20% of the material would be recycled and 25% of the organic waste recovered (7% household composting and 18% municipal composting). The biggest share of the waste goes to the incinerator (55%). Only the leftovers resulting from previous incineration and composting processes are dumped in landfills.
So which option performs best? Well, what makes LCAs better than any other environmental comparisons is their precision. A whole stack of impact categories are analyzed, and, as you can imagine, every category has a different winner. There is no final score. Too bad? Actually, the more detailed you analyze a phenomenon, the harder it will be to find a simple answer. If you are seriously investigating environmental effects, there is no universal answer most of the time. Much more, it all depends on your goals. You can find a more appropriate solution and you can drop a less appropriate one, depending on what you want to optimize. In this article, I look at five exemplary results: three impact categories and two figures measuring the overall energy consumption of the three waste management scenarios.
Incineration has Biggest GWP
One important impact category is the global warming potential (GWP). The GWP shows how much greenhouse gas will be emitted into the atmosphere in the medium run. As you can see in the diagram to the right, all the waste in Portugal’s Centre region causes roughly 150,000 – 480,000 tons of carbon dioxide equivalent greenhouse gas per year, depending on the way it is managed. And, in terms of global warming potential, scenario 2 performs best at only 150,000 t CO2eq/y. Scenario 2? Yes, mechanical-biological treatment, refuse-derived fuel, recycling and organic composting with a remainder of 10% to be dumped. At the other end of the scale is scenario 3, incineration, which will set free an enormous 480,000 t CO2eq every year, more than three times more.

Recycling + Refuse-Derived Fuel (Scenario 2) Consumes the Most Truck Fuel
However, in order to recycle it, the waste has to be collected and distributed, which consumes energy. Looking at the fuel consumption for waste transporters, it is the GWP winner, scenario 2, that scores worst. Roughly 5700 tons of fuel are needed, whereas scenario 3 only needs 3000, and scenario 1 even less at 2500 tons. If you compare the two diagrams, they give a contradictory impression. How can that be? Well, unlike consumer goods or food, transport is really just a small part of the GHG emissions for waste.

Another result that may seem a paradox at first sight is the toxicity. As I wrote earlier, waste disposal can harm soil and water. A standard impact category of life cycle assessment is human and ecotoxicity. Exactly these two categories show diverging results.

Biggest Water Polluter: Landfill (Scenario 1)
In terms of water pollution or aquatic ecotoxicity, the landfill option performs a lot worse than the other two options, as we would expect. Scenario 1 pollutes almost 500,000 m³ of water in one year. Scenario 3 generates one ninth of scenario 1’s water pollution, scenario 2 less than a third.

Most Toxic for Humans: Incineration (Sc. 3)
In contrast to this, the human toxicity category has a clear bad boy. Scenario 3 emits the most – more than double the emissions of scenario 1, almost three times more than scenario 2.
Summing things up, a sub-conclusion could be that the landfill option is not as bad we thought. What’s more, it is certain that the only sustainable option is waste prevention – through ecodesign, household composting, multi-use containers and little or no packaging. Once more, a life cycle assessment has proven that everything has its pros and cons.
In-Depth Efficiency-Analysis: Refuse-derived Fuel Plant vs. Incinerator
If you are dealing with waste management professionally, you may be interested in a presentation by Jasmin Kornau. This researcher from the Institute for Environmental and Biotechnology at the University of Applied Sciences Bremen compared the material and energy efficiency of two alternatives: a refuse-derived fuel plant with mechanical pre-treatment on the one hand, and an incineration plant on the other. Her slideshow (PDF download after registration) features detailed process maps and efficiency calculations.
Further Reading
- Seitz, Matthias: Life Cycle Assessment of Hazardous Waste Treatment in Bavaria – Modeling hazardous waste incineration processes using “ecoinvent Tools‟, bifa Environmental Institute, 16th Umberto User Workshop, 2011 (download PDF after registration here)
- Kornau, Jasmin: Comparison of various treatment options for municipal solid waste – Assessment of the material- and energy efficiency 15th Umberto User Workshop, 2010 (PDF download after registration)
- MARIA DO ROSÁRIO, Gomes and MANUEL ARLINDO, Matos: Waste-To-Energy Assessment of Solid Waste in the Centre Region of Portugal; Environment and Planning Department, University of Aveiro
Article image CC by knowtheflow.com, composed of images by llamnuds (CC 2.0 BY SA), meaduva (CC 2.0 BY) and Redwin Law (CC 2.0 BY)
- Products & Solutions (99)
- Trends & Technology (99)
- News & Updates (68)
- Challenges (67)
- Sustainability (48)
- life cycle assessment (44)
- Compliance (29)
- Energy efficiency (29)
- carbon footprint (23)
- circular economy (23)
- echa (21)
- Resource efficiency (19)
- SCIP (19)
- LCA (18)
- material efficiency (18)
- Umberto (17)
- Climate Change (16)
- Material flow cost accounting (15)
- material flow analysis (12)
- Renewable energy (11)
- Process Optimization (10)
- environmental product declaration (9)
- Ecodesign (8)
- Efficiency (8)
- Transparency (8)
- Trends (8)
- life cycle inventory (8)
- Customer driven-sustainability (7)
- Eco label (7)
- Ecological footprint (7)
- Ipoint suite (7)
- Lca databases (7)
- Supply chain (7)
- Survey (7)
- Sustainable development (7)
- automotive (7)
- blockchain (7)
- Reach (6)
- Renewable heat (6)
- research (6)
- China (5)
- Corporate carbon footprint (5)
- Digitalization (5)
- Industrial ecology (5)
- Materialflusskostenrechnung (5)
- carbon footprinting (5)
- carbon neutrality (5)
- digital product passport (5)
- waste management (5)
- Climate protection (4)
- Cobalt reporting (4)
- Dematerialization (4)
- EPD (4)
- GHG reduction (4)
- Green construction (4)
- OECD (4)
- Okobilanzierung (4)
- Social metabolism (4)
- Sustainable transport (4)
- carbon neutral (4)
- construction industry (4)
- germany (4)
- Big Data (3)
- Brexit (3)
- Chemical industry (3)
- Conflict minerals (3)
- Corporate Social Responsibility (3)
- Database (3)
- Due diligence (3)
- E-mobility (3)
- Environmental product declarations (3)
- Eutrophication (3)
- IFEU (3)
- ISO 50001 (3)
- Industrial sector (3)
- Innovation (3)
- Leed (3)
- Life cycle management (3)
- Medical device (3)
- Photovoltaics (3)
- Ressourceneffizienz (3)
- Social media (3)
- building sector (3)
- greenhouse gas inventory (3)
- svhc (3)
- transport sector (3)
- water footprint (3)
- 20-20-20 Objectives (2)
- 3D printing (2)
- BASF (2)
- Christian-Doppler-Laboratory (2)
- Competence center (2)
- Conflict minerals reporting (2)
- Cycling (2)
- E-car (2)
- Electric car (2)
- Emerging economies (2)
- Environmental impact (2)
- Environmental management (2)
- Environmental performance (2)
- Environmental sustainability index (2)
- European commission (2)
- Fish (2)
- Gate to gate (2)
- Global warming (2)
- Governance (2)
- Green business 2 (2)
- Green investment (2)
- Human rights (2)
- ISO-14051 (2)
- Inatba (2)
- Integrated reporting (2)
- Integrative approach (2)
- Knowledge economy (2)
- LCA data from suppliers (2)
- Life cycle thinking (2)
- MFA (2)
- Manufacturing industry (2)
- Okobilanz (2)
- Renewable Resources (2)
- Sdgs (2)
- Software (2)
- Steady state economy (2)
- Sustainable business (2)
- Sustainable lifestyle (2)
- UK REACH (2)
- Umberto for carbon footprint (2)
- Umweltbundesamt (2)
- Wastewater treatment (2)
- Water management (2)
- agriculture (2)
- best practice (2)
- biodiversity (2)
- biomass (2)
- building standards (2)
- carbon emissions (2)
- carbon intensity (2)
- carbon relocation (2)
- collaborative consumption (2)
- consistency (2)
- corporate material flow modeling (2)
- cost savings (2)
- developing world (2)
- eLCAr (2)
- energiewende (2)
- energy (2)
- esankey (2)
- food industry (2)
- green jobs (2)
- holistic approach (2)
- milk (2)
- modern slavery (2)
- okobilanzdaten (2)
- productivity (2)
- resilience (2)
- sankey diagram (2)
- seafood (2)
- transport (2)
- 2012 (1)
- 3 scopes (1)
- ACHEMA (1)
- AI (1)
- Abfallwirtschaft (1)
- Ankara (1)
- B2B (1)
- BMBF (1)
- BREEAM (1)
- Bachelor program (1)
- Bauwesen (1)
- Brazil (1)
- CFC (1)
- CO2-Fußabdruck (1)
- Carbon Accounting (1)
- Central america (1)
- Circular Economy Action Plan (1)
- Club of Rome (1)
- Co2 Pricing (1)
- Commercial Sector (1)
- Comparative life cycle assessment (1)
- Compliance agent (1)
- Composite indicator (1)
- Construction (1)
- Consumer goods (1)
- Consumption (1)
- Country Attractiveness (1)
- Creative sustainability (1)
- Critique of the green economy (1)
- Csr report (1)
- Dairy (1)
- Dashboard of sustainability (1)
- Data (1)
- Data collection (1)
- Davos (1)
- Decarbonization (1)
- Denmark (1)
- Design (1)
- Deutschland (1)
- Developing countries (1)
- Dienstleistungen (1)
- Digital twin (1)
- Distributed manufacturing (1)
- Divestment (1)
- Domestic fuel consumption (1)
- Domestic sector (1)
- Duty of care (1)
- Earth Sciences (1)
- Earth summit (1)
- Ecolabelling (1)
- Ecologic footprint (1)
- Ecological resilience (1)
- Education (1)
- Efficiency measures (1)
- Effizienzfabrik (1)
- Ehs (1)
- Emission relocation (1)
- Ems (1)
- Energieeffizienz (1)
- Energy Intensity by Sector (1)
- Energy contracting (1)
- Energy efficiency directive (1)
- Energy transition (1)
- Engineering excellence (1)
- Enhipro (1)
- Environment (1)
- Environmental Contracting (1)
- Environmental Engineering (1)
- Environmental balance (1)
- Environmental capital (1)
- Environmental labeling (1)
- Environmental management accounting (1)
- Environmental profit and loss statement (1)
- Environmental standard (1)
- Environmentally Weighed Material Consumption (1)
- European Comission (1)
- European Green Cars Initiative (1)
- Evaleau (1)
- Events (1)
- External effects (1)
- Fifa (1)
- Fishery (1)
- Fmd (1)
- Food footprint (1)
- Food production (1)
- Ford (1)
- Forest ecosystems (1)
- France (1)
- Free trade (1)
- Freighter travel (1)
- Full cost accounting (1)
- GHG mitigation (1)
- Ghg reduction goals (1)
- Global compact (1)
- Global justice (1)
- Global warming potential (1)
- Green building (1)
- Green business models (1)
- Green consumers (1)
- Green deal (1)
- Green new deal (1)
- Greenwash (1)
- HVAC (1)
- Happy life years (1)
- Harmonization (1)
- Harze (1)
- Hdpe (1)
- Human development index (1)
- Human trafficking (1)
- ILCD Handbook (1)
- IPCA (1)
- IPCC (1)
- ISO 14015 (1)
- ISO 14031 (1)
- ISO 14064 (1)
- ISO 14067 (1)
- ISO-14000 (1)
- ISO-14008 (1)
- ISO-14025 (1)
- ISO-14046 (1)
- Impact category (1)
- Incentive (1)
- Incentive based pay (1)
- Incineration (1)
- India (1)
- Industry-4-0 (1)
- Information design (1)
- Input output (1)
- Input output databases (1)
- Input output economics (1)
- Inreff (1)
- Intellectual property (1)
- Internalization of externalities (1)
- International standards (1)
- Interplant collaboration (1)
- Iso 14001 (1)
- Jevons paradox (1)
- Klimawandel (1)
- Konsumguter (1)
- Kuznets curve (1)
- LIFE AskREACH (1)
- Lieferkettengesetz (1)
- Life cycle analysis (1)
- Life cycle perspective (1)
- Life style (1)
- Linkedin (1)
- Living planet report (1)
- Long-Term Pay (1)
- Material consumption (1)
- Material flow modeling (1)
- Material flowcosts (1)
- Material footprint (1)
- Medical device regulation (1)
- Metal industry (1)
- Mexico (1)
- Monetize external costs (1)
- Montreal Protocol (1)
- Municipal solid waste (1)
- Natural Cost Accounting (1)
- Nature conservation (1)
- Nitrate pollution (1)
- Nutrients balance (1)
- Nutrients cycle (1)
- OECD Environment Policy Committee (1)
- Okobilanzdatenbanken (1)
- Okolabelling (1)
- Okologischer fusabdruck (1)
- Online Resource Efficiency Platform OREP (1)
- Operational efficiency (1)
- Outsourcing (1)
- PET (1)
- Pas (1)
- Pcf (1)
- Philippines (1)
- Pilot program (1)
- Plastic industry (1)
- Polio (1)
- Pollution haven hypothesis (1)
- Process engineering (1)
- Process improvement (1)
- Process system engineering (1)
- Product management (1)
- Product stewardship (1)
- Product sustainability (1)
- Production based CO2 Productivity (1)
- Production planning (1)
- Produktlebensdauer (1)
- Prop 65 (1)
- Protection proprietary data (1)
- Qatar (1)
- Quality (1)
- Quality journalism (1)
- Rapid prototyping (1)
- Refuse derived fuel plant (1)
- Renewable energy in manufacturing (1)
- Renewable methane (1)
- Renewable process heat (1)
- Renewable raw material (1)
- Resource flows (1)
- Retailer (1)
- Rio20 summit (1)
- Rolf Dobelli (1)
- Sap (1)
- Sfdr (1)
- Shopping rage (1)
- Smart grid (1)
- Social ecological resilience (1)
- Solar thermal energy (1)
- Sorgfaltspflichtengesetz (1)
- South africa (1)
- Soy milk (1)
- Stakeholder management (1)
- Supermarket chain (1)
- Sustainability indicators (1)
- Sustainability performance (1)
- Sustainability strategy (1)
- Sustainable architecture (1)
- Sustainable construction (1)
- Sustainable living (1)
- Sustainable process index (1)
- Sustainable resins (1)
- Sustainable resource management (1)
- Sydney (1)
- System analysis (1)
- Telecommunications (1)
- Tobias viere (1)
- Total material consumption (1)
- Treibhauspotenzial (1)
- Turkey (1)
- UK CA (1)
- University (1)
- Upcycling (1)
- VDMA (1)
- Vertical cooperation (1)
- Waste prevention (1)
- Water abstraction rate (1)
- Water extraction (1)
- Wind power (1)
- World cup (1)
- World vegan day (1)
- Yet (1)
- Zero carbon city (1)
- Zero emission mobility (1)
- academia (1)
- acidification (1)
- air quality (1)
- aluminum (1)
- amazon (1)
- antarctic ozone hole (1)
- apocalypse (1)
- apple (1)
- assessment (1)
- atmospheric carbon measurement (1)
- background database (1)
- battery change station (1)
- bike sharing (1)
- bio capacity (1)
- bio-economy (1)
- biocapacity (1)
- biological gas treatment (1)
- blogs (1)
- books (1)
- business opportunity (1)
- car (1)
- carbon free city (1)
- carbon leakage (1)
- carbon management (1)
- carbon management 2 (1)
- carbon reduction (1)
- carbon tax (1)
- carbon-neutral travel (1)
- cargo shipping (1)
- carton (1)
- certification (1)
- change (1)
- climate impact (1)
- climate neutral (1)
- co2 fusabdruck (1)
- cogeneration (1)
- combined reporting (1)
- commons (1)
- cooperation along product (1)
- cradle to cradle (1)
- de-growth economy (1)
- digital battery passport (1)
- ecarus (1)
- eco design (1)
- ecoinvent (1)
- ecological tax reform (1)
- ecosystem disturbance (1)
- efficiency investment (1)
- efficient construction (1)
- energy efficiency in production (1)
- energy sources (1)
- environmental accounting (1)
- environmental impact data (1)
- environmental management system (1)
- environmental performance indicator (1)
- environmental technology verification (1)
- environmentally friendly raw materials (1)
- esg (1)
- fashion (1)
- food loss (1)
- food sector (1)
- geopolymer cement (1)
- green Christmas (1)
- green buildings (1)
- green paradox (1)
- green production (1)
- greenhouse (1)
- handprinting (1)
- holistic sustainability (1)
- lca recommendations (1)
- lca-software (1)
- lcia (1)
- lifecycle (1)
- logitech (1)
- management models (1)
- material flow balance (1)
- material losses (1)
- material-flow-accounts (1)
- media (1)
- modeling (1)
- nuclear phase out (1)
- policy instruments (1)
- politics (1)
- post oil age (1)
- product environmental footprint (1)
- production circle (1)
- ressource efficiency analysis (1)
- saving potentials (1)
- scope 3 (1)
- season's greetings (1)
- smart meter (1)
- social cost accounting (1)
- stranded assets (1)
- sustainability control (1)
- sustainability projects (1)
- sustainable products (1)
- tajikistan (1)
- textile industry (1)
- textile refinement (1)
- toyota (1)
- trade (1)
- transport emissions (1)
- uk-rohs (1)
- umweltbilanz (1)
- urban carbon emissions (1)
- velib (1)
- volvo (1)
- waste air treatment (1)
- waste hierarchy (1)
- wastewater (1)
- water stress (1)
- wind gas (1)
- world statistics day (1)
- zero growth (1)
- Ökologischer Fußabdruck (1)