It is hard to argue that industrialism didn’t improve the world.
Without industrial-scale production, affordable food, clothing, medicine, transportation and communication we take for granted wouldn’t be possible. However, the real costs of industrialisation, including enormous social and environmental impact, remain out of sight.
The real cost of technology
Technology is central in our day-to-day lives. By “voting” with our wallets, we’ve made Apple, Intel, Nvidia, Samsung into some of the world’s largest companies. But what happens when our devices become obsolete? And just how much resources are consumed, lives impacted, and waste generated, in making us shiny new ones?
Globally, over 45 million tonnes of e-waste is generated annually, with only 20% of this being recycled [1]. As a result, we collectively throw away resources worth US$60 billion annually [2]. E-waste accounted for 70% of solid toxic waste in landfills, according to US EPA3. Much of the e-waste ends up in low-income countries where retrieving precious metals from e-waste comes with huge health, environmental and social risks.
But dwarfing this is the amount of waste associated with mining these resources; in only 48 hours, just one of the world’s five largest copper mines generates about the same amount of mine waste by weight as the total annual e-waste in China and the United States combined [4].
Demand and subsequent disposal for large batteries – such as those found in electric vehicles and home power storage systems – is set to increase by 1000% within the next decade [5]; the demand for new smartphones, laptops and IoT devices is steadily growing as well.
In conjunction with the rapidly growing demand, there is a diminishing supply of scarce raw materials such as cobalt and lithium, as well as problematic 3TG minerals: tin, tungsten, tantalum and gold, sourced from virgin sources with conflict mineral6 and environmental concerns.
Conflict minerals have been linked with funding killings, violence, and other human rights abuses in the Democratic Republic of Congo and other conflict zones.
Regulatory, investor and consumer pressure
Social, health, safety and environmental regulations differ from country to country and continuously evolve. A company operating globally needs to comply globally, which pushes them to collect information, analyze it, act and report the outcomes.
Simultaneously, investors are putting pressure on brands to report on the impact of their operations. Sustainable investing is already a $12 trillion market in the U.S.7 and these investors reduce risk by demanding transparency.
Finally, in today’s connection economy underpinned by the social web, knowledge about the behaviour and impact of brands has started to influence consumer behaviour. The internet provides the same communication channels to everyone; NGOs, for example, can educate consumers on the impact of the electronics industry in very much the same way a brand can market their latest products, features and pricing.
To meet the demands of consumers, investors, and comply with regulations, brands are finally seeing the value in transparency in their supply chain.
Achieving transparency today starts with digitalization [8].
Making change happen
Electronics industry supply chains are global, complex and opaque. Manufacturers rely on declarations from their suppliers to gather information about raw materials in their end products. This process requires significant time and resources to compensate for fragmented “systems” around provenance, traceability, compliance and due diligence.
The cobalt and 3TG mineral supply chain typically involve ten or more organisations spread across two or more continents. Imagine how much combined effort involving communication, pressuring, audits, certifications, requests, responses, declarations, forms, standards, documents, emails, and phone calls does it take to implement even a small change, end to end, in such a fragmented ecosystem.
Blockchain technology can help eliminate these complexities [9] by enabling systems designed for end-to-end transparency.
Blockchain
Blockchain is a distributed network where many parties write to and read from a shared digital tamper-proof ledger, and transactions are both time-stamped and immutable. In such a system any deviations or abnormalities can be flagged quickly- making it possible to identify problematic points in the supply chain in almost real time.
This single truth without single source data architecture enables supply chain networks to share production & product data amongst all tiers [10] allowing them to jointly tackle their responsibilities and challenges at a fraction of the current cost.
With blockchain, participants may inspect the entire uninterrupted chain of custody from the raw materials to the sale of the finished product to end-users and beyond, all the way to end-of-life recycling stage.
End-to-end transparency and traceability make it a lot harder for unethical sources of Conflict Minerals and 3TG to enter the supply chain. It becomes much harder to “cheat” when everyone gets to check everyone else’s claims, all the time. By reducing information asymmetries blockchain can help supply chains more evenly spread the cost of impact [11], incentivising better social and environmental practices.
One such initiative is SustainBlock (www.sustainblock.org), which utilises blockchain technology to combine traceability and provenance with Due Diligence in the same solution. The project focuses on minerals sourced in Conflict Affected and High-Risk Areas (CAHRAs) with support from the European Partnership for Responsible Minerals (EPRM) whose members include Apple, Samsung, Intel and Fairphone, amongst others.
Trusted verifiable information about raw materials can enable more subjective consumer value perceptions [11], making ethically sourced cobalt, for example, worth more than cobalt of unknown origin. De-commoditisation is already taking place in the food sector where “ethical” and “sustainable” products sell at a premium. The same is possible for electronics.
To become truly efficient, the supply chain must shift towards becoming circular. An electric vehicle battery made entirely of recycled materials demonstrates manufacturers’ technological superiority and their commitment to sustainability. The challenge is how to verify and prove this continuously. The solution is likely a system underpinned by blockchain technology.
New tools and a new mindset
Across all sectors, unsurprisingly, organisations are investing in blockchain [12] predominantly to automate, de-risk and improve the speed, efficiency and costs in the supply chain.
But blockchain offers a much deeper integration as it enables the supply chain to connect the price, value and impact, from the start of the product journey to its end-of-life, and back again. Built-in transparency can help eliminate conflict mineral trade as well as enable accounting for social and environmental cost of our collective manufacturing and resource consumption choices. This will also encourage manufacturers to design products that don’t leave lasting negative social and environmental impacts for generations to come.
All we must do is apply blockchain technology with a circular mindset; focusing on achieving needs but prioritising efficiency and energy savings, including designing out waste, fraud, corruption and negative health, safety and environmental impacts.
Like the circular economy, blockchain solutions require collaborative design thinking.
First published on https://ewastewatch.com.au/
References:
[1] ‘Electronic waste poses ‘growing risk’ to environment, human health, UN report warns’, UN News, 13/12/17; https://news.un.org/en/story/2017/12/639312-electronic-waste-poses-growing-risk-environment-human-health-un-report-warns[2] Baldé, C.P., Forti V., Gray, V., Kuehr, R., Stegmann,P. : The Global E-waste Monitor – 2017, United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna.; http://ewastemonitor.info/
[3] ‘One Person’s Trash Is Another’s Technology: Recycling or Donating Discarded Electronic Equipment Help Reduce E-Waste Pollution’, Scientific American, https://www.scientificamerican.com/article/earth-talk-recycling-e-equipment/
[4] ‘Almost everything you know about e-waste is wrong’, Josh Lepawsky; Https://theconversation.com/almost-everything-you-know-about-e-waste-is-wrong-93904
[5] Bloomberg NEF, Electric-Car Revolution Shakes Up the Biggest Metals Markets, August 3, 2017 https://about.bnef.com/blog/electric-car-revolution-is-shaking-up-the-biggest-metals-markets/
[6] ‘Conflict Minerals Regulation Explained’ EU Commission; http://ec.europa.eu/trade/policy/in-focus/conflict-minerals-regulation/regulation-explained/
[7] US SIF Foundation 2018 biennial Report on US Sustainable, Responsible and Impact Investing Trends https://www.ussif.org/files/US%20SIF%20Trends%20Report%202018%20Release.pdf
[8] Envisioning a sustainable future: increasing resource efficiency through digitization’; Martina Prox, ifu Hamburg / iPoint Group https://www.ipoint-systems.com/blog/envisioning-a-sustainable-future-increasing-resource-efficiency-through-digitalization/
[9] ‘RMI’s Blockchain Guidelines’ ; Responsible Minerals Initiative, http://www.responsiblemineralsinitiative.org/emerging-risks/blockchain/
[10] ‘A little supply chain disruption thought exercise’; Oliver Beige https://medium.com/@trialsanderrors/a-little-supply-chain-disruption-thought-exercise-64f4a705537a
[11] Darcy W. E. Allen, Alastair Berg, Brendan Markey-Towler: RMIT University Blockchain Innovation Hub -Blockchain and Supply Chains: V-form Organisations, Value Redistributions, De-commoditisation and Quality Proxies https://jbba.scholasticahq.com/article/7556-blockchain-and-supply-chains-v-form-organisations-value-redistributions-de-commoditisation-and-quality-proxies
[12] ‘Big Blockchain: The 50 Largest Public Companies Exploring Blockchain’; Michael del Castillo https://www.forbes.com/sites/michaeldelcastillo/2018/07/03/big-blockchain-the-50-largest-public-companies-exploring-blockchain/#5841e1c22b5b
- Products & Solutions (99)
- Trends & Technology (99)
- News & Updates (68)
- Challenges (67)
- Sustainability (48)
- life cycle assessment (44)
- Compliance (29)
- Energy efficiency (29)
- carbon footprint (23)
- circular economy (23)
- echa (21)
- Resource efficiency (19)
- SCIP (19)
- LCA (18)
- material efficiency (18)
- Umberto (17)
- Climate Change (16)
- Material flow cost accounting (15)
- material flow analysis (12)
- Renewable energy (11)
- Process Optimization (10)
- environmental product declaration (9)
- Ecodesign (8)
- Efficiency (8)
- Transparency (8)
- Trends (8)
- life cycle inventory (8)
- Customer driven-sustainability (7)
- Eco label (7)
- Ecological footprint (7)
- Ipoint suite (7)
- Lca databases (7)
- Supply chain (7)
- Survey (7)
- Sustainable development (7)
- automotive (7)
- blockchain (7)
- Reach (6)
- Renewable heat (6)
- research (6)
- China (5)
- Corporate carbon footprint (5)
- Digitalization (5)
- Industrial ecology (5)
- Materialflusskostenrechnung (5)
- carbon footprinting (5)
- carbon neutrality (5)
- digital product passport (5)
- waste management (5)
- Climate protection (4)
- Cobalt reporting (4)
- Dematerialization (4)
- EPD (4)
- GHG reduction (4)
- Green construction (4)
- OECD (4)
- Okobilanzierung (4)
- Social metabolism (4)
- Sustainable transport (4)
- carbon neutral (4)
- construction industry (4)
- germany (4)
- Big Data (3)
- Brexit (3)
- Chemical industry (3)
- Conflict minerals (3)
- Corporate Social Responsibility (3)
- Database (3)
- Due diligence (3)
- E-mobility (3)
- Environmental product declarations (3)
- Eutrophication (3)
- IFEU (3)
- ISO 50001 (3)
- Industrial sector (3)
- Innovation (3)
- Leed (3)
- Life cycle management (3)
- Medical device (3)
- Photovoltaics (3)
- Ressourceneffizienz (3)
- Social media (3)
- building sector (3)
- greenhouse gas inventory (3)
- svhc (3)
- transport sector (3)
- water footprint (3)
- 20-20-20 Objectives (2)
- 3D printing (2)
- BASF (2)
- Christian-Doppler-Laboratory (2)
- Competence center (2)
- Conflict minerals reporting (2)
- Cycling (2)
- E-car (2)
- Electric car (2)
- Emerging economies (2)
- Environmental impact (2)
- Environmental management (2)
- Environmental performance (2)
- Environmental sustainability index (2)
- European commission (2)
- Fish (2)
- Gate to gate (2)
- Global warming (2)
- Governance (2)
- Green business 2 (2)
- Green investment (2)
- Human rights (2)
- ISO-14051 (2)
- Inatba (2)
- Integrated reporting (2)
- Integrative approach (2)
- Knowledge economy (2)
- LCA data from suppliers (2)
- Life cycle thinking (2)
- MFA (2)
- Manufacturing industry (2)
- Okobilanz (2)
- Renewable Resources (2)
- Sdgs (2)
- Software (2)
- Steady state economy (2)
- Sustainable business (2)
- Sustainable lifestyle (2)
- UK REACH (2)
- Umberto for carbon footprint (2)
- Umweltbundesamt (2)
- Wastewater treatment (2)
- Water management (2)
- agriculture (2)
- best practice (2)
- biodiversity (2)
- biomass (2)
- building standards (2)
- carbon emissions (2)
- carbon intensity (2)
- carbon relocation (2)
- collaborative consumption (2)
- consistency (2)
- corporate material flow modeling (2)
- cost savings (2)
- developing world (2)
- eLCAr (2)
- energiewende (2)
- energy (2)
- esankey (2)
- food industry (2)
- green jobs (2)
- holistic approach (2)
- milk (2)
- modern slavery (2)
- okobilanzdaten (2)
- productivity (2)
- resilience (2)
- sankey diagram (2)
- seafood (2)
- transport (2)
- 2012 (1)
- 3 scopes (1)
- ACHEMA (1)
- AI (1)
- Abfallwirtschaft (1)
- Ankara (1)
- B2B (1)
- BMBF (1)
- BREEAM (1)
- Bachelor program (1)
- Bauwesen (1)
- Brazil (1)
- CFC (1)
- CO2-Fußabdruck (1)
- Carbon Accounting (1)
- Central america (1)
- Circular Economy Action Plan (1)
- Club of Rome (1)
- Co2 Pricing (1)
- Commercial Sector (1)
- Comparative life cycle assessment (1)
- Compliance agent (1)
- Composite indicator (1)
- Construction (1)
- Consumer goods (1)
- Consumption (1)
- Country Attractiveness (1)
- Creative sustainability (1)
- Critique of the green economy (1)
- Csr report (1)
- Dairy (1)
- Dashboard of sustainability (1)
- Data (1)
- Data collection (1)
- Davos (1)
- Decarbonization (1)
- Denmark (1)
- Design (1)
- Deutschland (1)
- Developing countries (1)
- Dienstleistungen (1)
- Digital twin (1)
- Distributed manufacturing (1)
- Divestment (1)
- Domestic fuel consumption (1)
- Domestic sector (1)
- Duty of care (1)
- Earth Sciences (1)
- Earth summit (1)
- Ecolabelling (1)
- Ecologic footprint (1)
- Ecological resilience (1)
- Education (1)
- Efficiency measures (1)
- Effizienzfabrik (1)
- Ehs (1)
- Emission relocation (1)
- Ems (1)
- Energieeffizienz (1)
- Energy Intensity by Sector (1)
- Energy contracting (1)
- Energy efficiency directive (1)
- Energy transition (1)
- Engineering excellence (1)
- Enhipro (1)
- Environment (1)
- Environmental Contracting (1)
- Environmental Engineering (1)
- Environmental balance (1)
- Environmental capital (1)
- Environmental labeling (1)
- Environmental management accounting (1)
- Environmental profit and loss statement (1)
- Environmental standard (1)
- Environmentally Weighed Material Consumption (1)
- European Comission (1)
- European Green Cars Initiative (1)
- Evaleau (1)
- Events (1)
- External effects (1)
- Fifa (1)
- Fishery (1)
- Fmd (1)
- Food footprint (1)
- Food production (1)
- Ford (1)
- Forest ecosystems (1)
- France (1)
- Free trade (1)
- Freighter travel (1)
- Full cost accounting (1)
- GHG mitigation (1)
- Ghg reduction goals (1)
- Global compact (1)
- Global justice (1)
- Global warming potential (1)
- Green building (1)
- Green business models (1)
- Green consumers (1)
- Green deal (1)
- Green new deal (1)
- Greenwash (1)
- HVAC (1)
- Happy life years (1)
- Harmonization (1)
- Harze (1)
- Hdpe (1)
- Human development index (1)
- Human trafficking (1)
- ILCD Handbook (1)
- IPCA (1)
- IPCC (1)
- ISO 14015 (1)
- ISO 14031 (1)
- ISO 14064 (1)
- ISO 14067 (1)
- ISO-14000 (1)
- ISO-14008 (1)
- ISO-14025 (1)
- ISO-14046 (1)
- Impact category (1)
- Incentive (1)
- Incentive based pay (1)
- Incineration (1)
- India (1)
- Industry-4-0 (1)
- Information design (1)
- Input output (1)
- Input output databases (1)
- Input output economics (1)
- Inreff (1)
- Intellectual property (1)
- Internalization of externalities (1)
- International standards (1)
- Interplant collaboration (1)
- Iso 14001 (1)
- Jevons paradox (1)
- Klimawandel (1)
- Konsumguter (1)
- Kuznets curve (1)
- LIFE AskREACH (1)
- Lieferkettengesetz (1)
- Life cycle analysis (1)
- Life cycle perspective (1)
- Life style (1)
- Linkedin (1)
- Living planet report (1)
- Long-Term Pay (1)
- Material consumption (1)
- Material flow modeling (1)
- Material flowcosts (1)
- Material footprint (1)
- Medical device regulation (1)
- Metal industry (1)
- Mexico (1)
- Monetize external costs (1)
- Montreal Protocol (1)
- Municipal solid waste (1)
- Natural Cost Accounting (1)
- Nature conservation (1)
- Nitrate pollution (1)
- Nutrients balance (1)
- Nutrients cycle (1)
- OECD Environment Policy Committee (1)
- Okobilanzdatenbanken (1)
- Okolabelling (1)
- Okologischer fusabdruck (1)
- Online Resource Efficiency Platform OREP (1)
- Operational efficiency (1)
- Outsourcing (1)
- PET (1)
- Pas (1)
- Pcf (1)
- Philippines (1)
- Pilot program (1)
- Plastic industry (1)
- Polio (1)
- Pollution haven hypothesis (1)
- Process engineering (1)
- Process improvement (1)
- Process system engineering (1)
- Product management (1)
- Product stewardship (1)
- Product sustainability (1)
- Production based CO2 Productivity (1)
- Production planning (1)
- Produktlebensdauer (1)
- Prop 65 (1)
- Protection proprietary data (1)
- Qatar (1)
- Quality (1)
- Quality journalism (1)
- Rapid prototyping (1)
- Refuse derived fuel plant (1)
- Renewable energy in manufacturing (1)
- Renewable methane (1)
- Renewable process heat (1)
- Renewable raw material (1)
- Resource flows (1)
- Retailer (1)
- Rio20 summit (1)
- Rolf Dobelli (1)
- Sap (1)
- Sfdr (1)
- Shopping rage (1)
- Smart grid (1)
- Social ecological resilience (1)
- Solar thermal energy (1)
- Sorgfaltspflichtengesetz (1)
- South africa (1)
- Soy milk (1)
- Stakeholder management (1)
- Supermarket chain (1)
- Sustainability indicators (1)
- Sustainability performance (1)
- Sustainability strategy (1)
- Sustainable architecture (1)
- Sustainable construction (1)
- Sustainable living (1)
- Sustainable process index (1)
- Sustainable resins (1)
- Sustainable resource management (1)
- Sydney (1)
- System analysis (1)
- Telecommunications (1)
- Tobias viere (1)
- Total material consumption (1)
- Treibhauspotenzial (1)
- Turkey (1)
- UK CA (1)
- University (1)
- Upcycling (1)
- VDMA (1)
- Vertical cooperation (1)
- Waste prevention (1)
- Water abstraction rate (1)
- Water extraction (1)
- Wind power (1)
- World cup (1)
- World vegan day (1)
- Yet (1)
- Zero carbon city (1)
- Zero emission mobility (1)
- academia (1)
- acidification (1)
- air quality (1)
- aluminum (1)
- amazon (1)
- antarctic ozone hole (1)
- apocalypse (1)
- apple (1)
- assessment (1)
- atmospheric carbon measurement (1)
- background database (1)
- battery change station (1)
- bike sharing (1)
- bio capacity (1)
- bio-economy (1)
- biocapacity (1)
- biological gas treatment (1)
- blogs (1)
- books (1)
- business opportunity (1)
- car (1)
- carbon free city (1)
- carbon leakage (1)
- carbon management (1)
- carbon management 2 (1)
- carbon reduction (1)
- carbon tax (1)
- carbon-neutral travel (1)
- cargo shipping (1)
- carton (1)
- certification (1)
- change (1)
- climate impact (1)
- climate neutral (1)
- co2 fusabdruck (1)
- cogeneration (1)
- combined reporting (1)
- commons (1)
- cooperation along product (1)
- cradle to cradle (1)
- de-growth economy (1)
- digital battery passport (1)
- ecarus (1)
- eco design (1)
- ecoinvent (1)
- ecological tax reform (1)
- ecosystem disturbance (1)
- efficiency investment (1)
- efficient construction (1)
- energy efficiency in production (1)
- energy sources (1)
- environmental accounting (1)
- environmental impact data (1)
- environmental management system (1)
- environmental performance indicator (1)
- environmental technology verification (1)
- environmentally friendly raw materials (1)
- esg (1)
- fashion (1)
- food loss (1)
- food sector (1)
- geopolymer cement (1)
- green Christmas (1)
- green buildings (1)
- green paradox (1)
- green production (1)
- greenhouse (1)
- handprinting (1)
- holistic sustainability (1)
- lca recommendations (1)
- lca-software (1)
- lcia (1)
- lifecycle (1)
- logitech (1)
- management models (1)
- material flow balance (1)
- material losses (1)
- material-flow-accounts (1)
- media (1)
- modeling (1)
- nuclear phase out (1)
- policy instruments (1)
- politics (1)
- post oil age (1)
- product environmental footprint (1)
- production circle (1)
- ressource efficiency analysis (1)
- saving potentials (1)
- scope 3 (1)
- season's greetings (1)
- smart meter (1)
- social cost accounting (1)
- stranded assets (1)
- sustainability control (1)
- sustainability projects (1)
- sustainable products (1)
- tajikistan (1)
- textile industry (1)
- textile refinement (1)
- toyota (1)
- trade (1)
- transport emissions (1)
- uk-rohs (1)
- umweltbilanz (1)
- urban carbon emissions (1)
- velib (1)
- volvo (1)
- waste air treatment (1)
- waste hierarchy (1)
- wastewater (1)
- water stress (1)
- wind gas (1)
- world statistics day (1)
- zero growth (1)
- Ökologischer Fußabdruck (1)