E-mobility is a hotly debated issue right now, both in scientific circles and in the media. Some herald it as enabling mobility with fewer carbon emissions, while others claim battery production makes electric vehicles (EVs) just as ‘dirty’ as cars with internal combustion engines (ICE). These opposing positions can lead to a high level of uncertainty, both for consumers and for policy makers. As is so often the case, the verdict is a stout “it depends”, so it’s worth taking a closer look at the life cycle of electric cars.
A life cycle perspective for transparency issues
On June 26, 2019, ifu Hamburg, Member of iPoint Group, held their Life Cycle Workshop at the Stadthalle Reutlingen. The event brought together more than 50 life cycle enthusiasts from the fields of industry, research, and consulting to exchange their experience and knowledge about topics concerning Life Cycle Assessments.
This year, the workshop was part of the fw:transparency event, a joint event by ifu und its parent company iPoint, which focused on business transparency in the context of sustainability and compliance. Consequently, the Life Cycle Workshop’s main focus was “Transparency requires a life cycle perspective”.
The difficulty of assessing the e-mobility carbon footprint

Dr.-Ing. Kirsten Biemann from the ifeu Institut für Energie und Umweltforschung Heidelberg has been working with Life Cycle Assessments for nearly 10 years and earned a doctorate in the field of comparative LCAs in 2014. She has been a Research Associate at ifeu since 2015 and now focuses on analysis of the environmental impact of the various modes of transportation along the entire process chain.
At the Life Cycle Workshop 2019, she explained that, when ifeu performed a meta study of the climate impact of EVs, they discovered findings that ranged from 50 to 210 g of CO2 per km driven. Biemann reported that the huge gap is due to a variety of factors, primarily lifetime mileage of a vehicle, the type of driving (short or long range), the fuel mix used for charging the car during its use phase, and the impact of battery production.
Factors influencing the carbon footprint of EVs
ifeu then created its own model, based on a generic, mid-sized electric car. The study focused on the vehicle’s overall carbon footprint and the resulting climate impact over its entire life cycle. Modeling was done with the Umberto software developed by ifu, using the ecoinvent data base. The following results are all based on the Umberto model seen below:

Calculating the energy mix correctly is key so, assuming an average use phase of 10-12 years, the model also took projected future changes into account. Currently, the energy mix in Germany still includes a high percentage of fossil fuels; but during the time the car will be on the road, it is expected to move toward much more renewable energy, and thus a considerably smaller carbon footprint.
Another important factor is the vehicle’s overall lifetime mileage, which can vary greatly. So rather than simply arriving at a fixed number for CO2/kwh used, ifeu decided to pinpoint break-even points as identified by their comparative carbon footprint analysis.

Generally, the initial energy input during the manufacturing phase is about the same for both electric and conventionally powered cars. But EVs add another large energy chunk to their ecological impact in the form of battery production. So, it’s only during the use phase that e-vehicles really shine: their CO2 impact is a lot smaller than that of ICE powered cars and the relative CO2 savings increase the longer the car is on the road.
Which brings us back to the break-even point. In this mid-sized car scenario, it occurs between 60 – 80,000 km, well within a car’s typical lifespan.
Fine-tuning results by changing modeling parameters
By adjusting some of the variables in their model, ifeu was able to show just where the critical points are to make e-mobility more sustainable. In a scenario called “City”, the analysis was based on the fact that electric cars are often the second vehicle in a household and therefore mainly used in city traffic for short range driving. Based on that, the model assumes a smaller, low-range battery and also lower lifetime mileage.
The result is a break-even point that is reached much sooner, at around 40,000 km. So, despite the higher up-front carbon input during the production phase, the biggest reduction of climate impact with electric vehicles remains during their use phase. Which makes the energy mix used to power them a key issue!
The dirty little secret of battery production
The critically important factor in the life cycle of an EV is still its battery. Nearly 50% of the battery’s overall CO2 impact is generated during its manufacturing phase, due to the high energy input required. So, the energy mix used is a crucial variable.
Currently, EV batteries are mainly produced in the US, China, Japan, and Korea – all of which still have high rates of fossil fuels in their energy mix. A switch to using more renewable energy during battery production could thus significantly lower the overall carbon footprint of the vehicle.

You can read more about the role of batteries in e-mobility in our blog article on LCA of lithium-ion batteries.
Assuming that cell production continues its dynamic advancement – using fewer raw materials and less energy while achieving higher efficiency – the break-even point of a 35 kWh battery could be reached as early as 30,000 km, or 50,000 km for a longer range, 60 kWh battery.
Future outlook: more sustainable e-mobility by 2030
So, how can we improve the LCA numbers for e-vehicles by 2030 and achieve a lower carbon footprint?
- Decarbonize the energy mix both in manufacturing and use
- Increase engine efficiency
- Lower charging losses
- Keep battery capacities as small as possible while still achieving consumer acceptance
- Improve the efficiency of battery production
These suggested improvements could cut the carbon footprint for battery production in half compared with today. In addition, higher lifetime mileage also has a positive impact. In combination, these improvements could make the transition to a truly sustainable e-mobility feasible.

The complete ifeu study is available only in German, but you can find the Executive Summary in English at: https://www.agora-verkehrswende.de/en/publications/lifecycle-analysis-of-electric-vehicles-study-in-german-with-english-executive-summary/
Presentations and videos of the Life Cycle Workshop are available at: https://www.ifu.com/en/events/life-cycle-workshop/
The next Life Cycle Workshop will take place in 2021. To receive an invitation for the next workshop ► Subscribe to our newsletter
- Products & Solutions (100)
- Trends & Technology (99)
- News & Updates (68)
- Challenges (67)
- life cycle assessment (44)
- Compliance (28)
- circular economy (23)
- carbon footprint (22)
- echa (21)
- LCA (19)
- Resource efficiency (19)
- SCIP (19)
- Umberto (18)
- material flow analysis (13)
- Renewable energy (11)
- Process Optimization (10)
- environmental product declaration (9)
- Ecodesign (8)
- Efficiency (8)
- Trends (8)
- Eco label (7)
- Lca databases (7)
- Supply chain (7)
- Survey (7)
- Sustainable development (7)
- blockchain (7)
- automotive (6)
- research (6)
- China (5)
- Corporate carbon footprint (5)
- Digitalization (5)
- Materialflusskostenrechnung (5)
- carbon footprinting (5)
- digital product passport (5)
- waste management (5)
- Chemical industry (4)
- Climate protection (4)
- Cobalt reporting (4)
- OECD (4)
- Sustainable transport (4)
- carbon neutrality (4)
- construction industry (4)
- germany (4)
- Big Data (3)
- Brexit (3)
- Conflict minerals (3)
- Corporate Social Responsibility (3)
- Database (3)
- Environmental product declarations (3)
- IFEU (3)
- Medical device (3)
- Ressourceneffizienz (3)
- building sector (3)
- carbon neutral (3)
- greenhouse gas inventory (3)
- transport sector (3)
- water footprint (3)
- 20-20-20 Objectives (2)
- BASF (2)
- Christian-Doppler-Laboratory (2)
- Environmental impact (2)
- Environmental management (2)
- Environmental performance (2)
- Fish (2)
- Gate to gate (2)
- Global warming (2)
- Governance (2)
- Green business 2 (2)
- Inatba (2)
- Integrated reporting (2)
- Integrative approach (2)
- Knowledge economy (2)
- MFA (2)
- Renewable Resources (2)
- Sdgs (2)
- Software (2)
- Steady state economy (2)
- Sustainable business (2)
- UK REACH (2)
- Umweltbundesamt (2)
- agriculture (2)
- best practice (2)
- biodiversity (2)
- biomass (2)
- building standards (2)
- carbon intensity (2)
- carbon relocation (2)
- collaborative consumption (2)
- consistency (2)
- corporate material flow modeling (2)
- cost savings (2)
- developing world (2)
- eLCAr (2)
- energiewende (2)
- energy (2)
- esankey (2)
- food industry (2)
- green jobs (2)
- holistic approach (2)
- milk (2)
- productivity (2)
- resilience (2)
- sankey diagram (2)
- seafood (2)
- transport (2)
- 2012 (1)
- 3 scopes (1)
- 3D printing (1)
- ACHEMA (1)
- AI (1)
- Abfallwirtschaft (1)
- Ankara (1)
- B2B (1)
- BMBF (1)
- BREEAM (1)
- Bachelor program (1)
- Bauwesen (1)
- Brazil (1)
- CFC (1)
- CO2-Fußabdruck (1)
- Comparative life cycle assessment (1)
- Composite indicator (1)
- Consumer goods (1)
- Consumption (1)
- Country Attractiveness (1)
- Csr report (1)
- Data (1)
- Davos (1)
- Decarbonization (1)
- Design (1)
- Developing countries (1)
- Domestic sector (1)
- Earth Sciences (1)
- Earth summit (1)
- Ecolabelling (1)
- Efficiency measures (1)
- Effizienzfabrik (1)
- Ehs (1)
- Ems (1)
- Energieeffizienz (1)
- Energy Intensity by Sector (1)
- Engineering excellence (1)
- Environmental Contracting (1)
- Environmental Engineering (1)
- Environmental capital (1)
- European Comission (1)
- European Green Cars Initiative (1)
- Events (1)
- External effects (1)
- Fifa (1)
- Fmd (1)
- Food footprint (1)
- Food production (1)
- Ford (1)
- Forest ecosystems (1)
- Freighter travel (1)
- GHG mitigation (1)
- Global compact (1)
- Green business models (1)
- Green consumers (1)
- Green deal (1)
- Green new deal (1)
- Human development index (1)
- ILCD Handbook (1)
- IPCC (1)
- ISO 14015 (1)
- ISO 14031 (1)
- ISO 14064 (1)
- ISO 14067 (1)
- ISO-14000 (1)
- ISO-14025 (1)
- Impact category (1)
- Incentive (1)
- Information design (1)
- Input output economics (1)
- Intellectual property (1)
- Kuznets curve (1)
- LIFE AskREACH (1)
- Lieferkettengesetz (1)
- Life cycle analysis (1)
- Life cycle perspective (1)
- Linkedin (1)
- Living planet report (1)
- Long-Term Pay (1)
- Material consumption (1)
- Material flowcosts (1)
- Material footprint (1)
- Mexico (1)
- Montreal Protocol (1)
- Natural Cost Accounting (1)
- Nature conservation (1)
- Nitrate pollution (1)
- Nutrients cycle (1)
- Okobilanzdatenbanken (1)
- Okolabelling (1)
- Online Resource Efficiency Platform OREP (1)
- Pas (1)
- Pcf (1)
- Philippines (1)
- Pilot program (1)
- Plastic industry (1)
- Process improvement (1)
- Process system engineering (1)
- Product management (1)
- Product sustainability (1)
- Production planning (1)
- Produktlebensdauer (1)
- Protection proprietary data (1)
- Pvc (1)
- Quality journalism (1)
- Rapid prototyping (1)
- Refuse derived fuel plant (1)
- Renewable process heat (1)
- Retailer (1)
- Rio20 summit (1)
- Rolf Dobelli (1)
- Solar thermal energy (1)
- Sorgfaltspflichtengesetz (1)
- South africa (1)
- Sustainability performance (1)
- Sustainability strategy (1)
- Sustainable architecture (1)
- Sustainable living (1)
- Sustainable resins (1)
- Sydney (1)
- Treibhauspotenzial (1)
- Turkey (1)
- UK CA (1)
- University (1)
- VDMA (1)
- Vertical cooperation (1)
- Wind power (1)
- World vegan day (1)
- Yet (1)
- academia (1)
- acidification (1)
- air quality (1)
- aluminum (1)
- amazon (1)
- antarctic ozone hole (1)
- apocalypse (1)
- apple (1)
- assessment (1)
- atmospheric carbon measurement (1)
- background database (1)
- battery change station (1)
- bike sharing (1)
- bio capacity (1)
- bio-economy (1)
- biocapacity (1)
- biological gas treatment (1)
- blogs (1)
- books (1)
- business opportunity (1)
- car (1)
- carbon emissions (1)
- carbon free city (1)
- carbon leakage (1)
- carbon management (1)
- carbon management 2 (1)
- carbon reduction (1)
- carbon tax (1)
- carbon-neutral travel (1)
- cargo shipping (1)
- carton (1)
- certification (1)
- change (1)
- climate impact (1)
- climate neutral (1)
- cogeneration (1)
- combined reporting (1)
- commons (1)
- cooperation along product (1)
- cradle to cradle (1)
- de-growth economy (1)
- digital battery passport (1)
- ecarus (1)
- eco design (1)
- ecoinvent (1)
- ecological tax reform (1)
- ecosystem disturbance (1)
- efficient construction (1)
- energy efficiency in production (1)
- environmental accounting (1)
- environmental impact data (1)
- environmental management system (1)
- environmental performance indicator (1)
- environmental technology verification (1)
- environmentally friendly raw materials (1)
- esg (1)
- fashion (1)
- food loss (1)
- food sector (1)
- gate-to-gate approach (1)
- geopolymer cement (1)
- green Christmas (1)
- green buildings (1)
- green paradox (1)
- green production (1)
- greenhouse (1)
- handprinting (1)
- lca-software (1)
- lcia (1)
- lifecycle (1)
- logitech (1)
- management models (1)
- material flow balance (1)
- material losses (1)
- material-flow-accounts (1)
- media (1)
- modeling (1)
- nuclear phase out (1)
- policy instruments (1)
- politics (1)
- post oil age (1)
- product environmental footprint (1)
- production circle (1)
- ressource efficiency analysis (1)
- saving potentials (1)
- scope 3 (1)
- season's greetings (1)
- smart meter (1)
- social cost accounting (1)
- stranded assets (1)
- sustainability control (1)
- sustainability projects (1)
- sustainable products (1)
- tajikistan (1)
- textile industry (1)
- textile refinement (1)
- toyota (1)
- uk-rohs (1)
- umweltbilanz (1)
- urban carbon emissions (1)
- velib (1)
- volvo (1)
- waste hierarchy (1)
- wastewater (1)
- water stress (1)
- wind gas (1)
- zero growth (1)
- Ökologischer Fußabdruck (1)